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ABSTRACT

Transfer visual feature learning (TVFL), which learns com-
pact representations for images such that we can build ac-
curate classifier for target domain by leveraging rich labeled
data in the source domain, has attracted increasingly at-
tention recently. Previous methods mainly focus on reduc-
ing the distribution difference between domains but ignore
the intrinsic hidden semantics in data. In this paper, we
put forward a novel method for TVFL, called Distribution
Regularized Nonnegative Matrix Factorization (DRNMF).
Specifically, we employ Nonnegative Matrix Factorization
(NMF) to uncover the intrinsic information in visual da-
ta, and regularize it with geometrical distribution, marginal
probability distribution and conditional probability distri-
bution. Thus, DRNMF can discover the intrinsic infor-
mation, preserve the manifold structure and reducing both
marginal and conditional probability distribution difference
simultaneously, which all perspectives above are important
for TVFL.We also propose an effective and efficient algorith-
m for the optimization of DRNMF and theoretically prove
the convergence. Extensive experiments on three types of
cross-domain image classification tasks in comparison with
several state-of-the-art methods demonstrate the superiority
of our DRNMF, which validates its effectiveness.

General Terms

Algorithms, Performance, Experimentation

Keywords

Nonnegative Matrix Factorization, Transfer Learning, Geo-
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1. INTRODUCTION
Given a new target domain for classification, it’s some-

times burdensome and difficult, even if not impossible, to
obtain sufficient labeled data to train accurate classifiers
[23, 26]. Fortunately, there are always related source do-
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mains where labeled data is abundant and we can use the
knowledge in source domains to help build accurate clas-
sifiers for target domain, which is termed in literatures as
transfer learning [24] who has shown promising results in im-
age classification [14, 29], object recognition [1, 11], feature
learning [13, 15] and retrieval [7]. Because of the probability
distribution difference between domains, previous works on
transfer learning mainly focus on learning transfer features
such that the inter-domain probability difference can be re-
duced by preserving statistical properties [13, 25], geometric
structure [8, 27] shared by different domains, or explicitly
minimizing the pre-defined distance measures [21, 22, 23,
28, 30]. Though the learned transfer features can alleviate
the probability distribution difference between domains such
that we can train standard classifiers like Logistic Regression
and SVM on them, they can’t capture the intrinsic hidden
semantics of image data which is also a very important per-
spective for building effective classifiers.

Actually, one may always hope to construct compact low-
dimensional representations which can also uncover the in-
trinsic hidden semantics of image data. Several feature learn-
ing techniques have been proposed for image data to achieve
this goal. Among them, Nonnegative Matrix Factorization
(NMF) [16, 17] has recently attracted increasingly attention
because the nonnegative constraints can lead to parts-based
representation for images because only additive, not subtrac-
tive, combinations of basis vectors are allowed. And there is
psychological and physiological evidence for parts-based rep-
resentations in human brain [19]. NMF has been proved to
be an effective tool to extract intrinsic hidden semantics and
applied to several tasks like face recognition [18] and image
clustering [3, 5]. But when the labeled and unlabeled images
are drawn from different probability distributions, NMF will
be greatly challenged because it may generate quite differ-
ent representations for images drawn from different prob-
ability distributions even if they share the same semantic
label, e.g., images of one object but collected from differen-
t illumination conditions. Fortunately, compared to other
feature learning techniques like Sparse Coding which always
leads to high-dimensional representation with over-complete
basis, it’s more natural to incorporate transfer learning to
NMF since NMF leads to features with low dimensionality
which is more favored than the high one in transfer learning
who always looks for low-dimensional shared subspace for
domains [21, 23, 28].

Motivated by recent works in transfer learning and NMF,
in this paper we propose a novel method for transfer vi-
sual feature learning, called Distribution Regularized Non-



negative Matrix Factorization (DRNMF). Specifically, it’s
build on NMF, and regularized by geometrical distribution,
marginal probability distribution and conditional probabili-
ty distribution. Thus it can simultaneously uncover the in-
trinsic hidden semantics, preserve local geometric structure,
reduce difference of both marginal and conditional probabil-
ity distributions. By utilizing the power of NMF, DRNMF
can learn more effective visual features to build accurate
cross-domain classifiers. Meanwhile, DRNMF can also be
regarded as an enhanced and extended version of NMF such
that NMF can handle the probability distribution difference
between datasets, which is also very common in real world.
In summary, this paper makes some contributions as below.

• We propose a novel DRNMF for transfer visual feature
learning. It can learn more effective compact features
for cross-domain image classification task by simulta-
neously extracting intrinsic hidden semantics, preserv-
ing geometric structure, and reducing marginal as well
as conditional distribution difference among domains.

• Conventional NMF is extended by DRNMF such that
it can handle the probability distribution difference in
data while previous works on NMF almost ignore this.

• We put forward an effective and efficient iterative algo-
rithm with multiplication updating rules for the opti-
mization problem of DRNMF, and give the theoretical
analysis on the convergency property of this algorithm.

• We conduct extensive experiments on three types of
cross-domain image classification problems. The ex-
periment results demonstrate that DRNMF can sig-
nificantly outperform several state-of-the-art related
methods, validating the effectiveness of our DRNMF.

The rest of this paper is organized as follows. In Section
2, some important related works are reviewed. The the pro-
posed DRNMF is introduced in detail in Section 3. The
theoretical analysis is shown in Section 4. Then we present
experiment in Section 5 and draw conclusion in Section 6.

2. RELATED WORK
Maximum Mean Discrepancy (MMD)[9] is widely used

as an nonparametric distance measure between probabili-
ty distributions. It will asymptotically approach to zero if
and only if the two distributions are identical. By mini-
mizing MMD of features, the probability distribution dif-
ference of original features in different domains can be al-
leviated. Specifically, Transfer Component Analysis (TCA)
[23] aims to minimize the MMD of marginal probability dis-
tribution between domains and the reconstruction error of
data simultaneously based on PCA. And Joint Distribution
Adaptation (JDA) [21] extends TCA by further minimizing
the MMD of conditional probability distribution between
domains. Though the probability distribution difference be-
tween domains can be reduced, these methods can’t discover
the intrinsic hidden semantics, as mentioned above, which
is also a key difference between their methods and DRNMF
who focuses on learning effective image representations by
building an adaptive model based on NMF.

We also noticed that some efforts have been made to incor-
porate effective feature learning methods into transfer learn-
ing such that the learned transfer visual features can reduce
the probability distribution difference while discover intrin-
sic hidden semantics [20, 26]. These methods adopt Sparse
Coding (SC) for feature learning. But SC always requires

Table 1: Notations and descriptions in this paper
Notation Description Notation Description

Ds source domain Dt target domain

ns #source images nt #target iamges

m #original features C #classes

k #basis vectors p #NN

α graph para. β MMD para.

X input matrix U basis matrix

V transfer features W NN matrix

L graph Lap. matrix Mc MMD matrix

over-complete basis such that it’s difficult to directly apply
SC to high-dimensional image data and the learned features
are not compact and low-dimensional. And they need to
solve an ℓ1-regularized least square problem which is highly
inefficient compared to NMF. Furthermore, kernel density
estimation technique is adopted in [26] which is more re-
stricted than DRNMF and is prone to be over-fitting, while
conditional probability distribution is ignored in [20].

3. THE PROPOSED METHOD

3.1 Problem Definition
Following the conventional definition for transfer feature

learning, such as in [21], our problem is defined as follows,

Problem 1. Given a labeled dataset in source domain
Ds = {(x1, y1), ..., (xns , yns)}, and an unlabeled dataset in
target domain Dt = {xns+1, ...,xns+nt}, where the marginal
and conditional probability distributions are both different,
i.e., Ps(xs) 6= Pt(xt) and Ps(ys|xs) 6= Pt(yt|xt), our goal is
to learn a new representation such that classifiers trained on
labeled dataset can work robustly on unlabeled dataset.

where ns and nt are the number of images in source and
target domain respectively. Totally, we can first define X =
[x1, ..., xns+nt ] ∈ R

m×(ns+nt) as the nonnegative data ma-
trix where each data is represented by an m-dimensional
vector. Our goal is to learn a basis matrix U ∈ R

m×k and
corresponding k-dimensional nonnegative transfer features
V = [v1, ...,vns+nt ] ∈ R

k×(ns+nt). Now we can train any
supervised classifiers on {(v1, y1), ..., (vns , yns)}, and then
classify {vns+1, ...,vns+nt} with obtained classifiers.

3.2 Objective Function

3.2.1 Nonnegative Matrix Factorization

Given a nonnegative data matrixX, NMF aims to find two
nonnegative matrices U as basis of latent space and the cor-
responding coordinates V which can well approximate the
original data matrix X. And the quality of approximation
is always measured by the squared loss function. Therefore
the objective function of NMF can be written as below [16],

ONMF = ‖X−UV‖2F s.t. U,V ≥ 0 (1)

where ‖ · ‖F is the Frobenius norm of matrix. NMF has
been proved to be a powerful tool to learn compact low-
dimensional representations and uncover the intrinsic hid-
den semantics of image data because the nonnegative con-
straints may lead to parts-based representations for image
data which has psychological and physiological evidence in
human brain [19]. Generally, minimizing Eq. (1) can be



effectively and efficiently achieved by utilizing an iterative
strategy with the following multiplicative updating rules [17]

uil ← uil

(XVT )il
(UVVT )il

, vlj ← vlj
(UTX)lj
(UTUV)lj

(2)

3.2.2 Geometrical Distribution Regularization

In real world, natural data always lies on a low-dimensional
manifold embedded in high-dimensional ambient space. How-
ever, conventional NMF ignores this geometrical distribution
underlying the image data. In [3], an extension of NM-
F called Graph Regularized NMF (GNMF) is proposed to
further explore the geometrical distribution of data. Specifi-
cally, the geometrical distribution is exploited by preserving
the locality of data based on the locality invariant idea [12],
i.e., the nearby points in original space should be close to
each other in low-dimensional latent space. Firstly we can
construct a p (such as 5) nearest neighbor matrix as

Wij =

{

1, if xi ∈ N (xj) or xj ∈ N (xi)
0, otherwise

(3)

where N (xi) denotes the p nearest neighbor of xi. Then
we can define a diagonal degree matrix with diagonal el-
ement Dii =

∑n

j=1Wij and the graph Laplacian matrix
L = D−W. So the locality invariant idea can be formulate
as minimizing 1

2

∑n

i,j=1Wij‖vi−vj‖
2
F = tr(VLVT ). By in-

corporating this geometrical distribution regularization (or
termed as graph regularization in [3]) into NMF, we have
the objective function of GNMF written as below,

OGNMF = ‖X−UV‖2F + αtr(VLVT ) s.t. U,V ≥ 0 (4)

where α is the regularization parameter to control the weight
of the regularization. Actually, GNMF has shown promising
result on single-domain problems because it’s able to uncov-
er the intrinsic hidden semantics and preserve the geometri-
cal distribution of data. However, when applying it directly
to cross-domain problems, the performance of GNMF may
degrade severely because it ignores the probability distribu-
tion difference between domains. But it lays the foundation
of our DRNMF as a feature learning method.

3.2.3 Probability Distribution Regularization

In the k-dimensional representation learned by GNMF,
the distribution difference between domains is still signifi-
cantly large. Thus we need to reduce the distribution differ-
ence by explicitly minimize some predefined distance mea-
sure during the feature learning procedure. In this paper
we follow [9, 22, 23] and utilize a nonparametric distance
measure, Maximum Mean Discrepancy (MMD), to compare
different distributions, which is defined as the distance be-
tween the sample means of source and target domains as

‖
1

ns

ns
∑

i=1

vi −
1

nt

ns+nt
∑

j=ns+1

vj‖
2
F = tr(VM0V

T ) (5)

where M0 is the MMD matrix which is defined as follows,

(M0)ij =







1
nsns

, if xi,xj ∈ Ds

1
ntnt

, if xi,xj ∈ Dt

−1
nsnt

, otherwise
(6)

By minimizing Eq. (5), we can reduce the marginal prob-
ability distribution difference between domains in learned
representations like in TCA, i.e., we have Ps(vs) ≈ Pt(vt).

Furthermore, the conditional probability distribution is
also important for transfer feature learning, especially when
the learned features are utilized in classification task. Some
works have been proposed to match the conditional proba-
bility distributions [2, 4, 26, 30]. But they all require some
labeled data in target domain. Thus they can’t be applied
to our problem. Instead, we follow the idea in [21] where
pseudo labels of target domain data predicted by base clas-
sifier which is trained on the labeled source domain data are
exploited to match the conditional probability distributions.

Actually, directly matching the sample-conditional proba-
bility distribution P (y|v) is infeasible because this posterior
probability is very difficult to estimate. Instead, we can
match the class-conditional probability distribution P (v|y),
i.e., we hope the learned representations can satisfy Ps(vs|y =
c) ≈ Pt(vt|y = c) for ∀c ∈ {1, ..., C}, where C is the
number of class. Besides the difficulty to estimate sample-
conditional probability distribution, here is another reason
why we can utilize class-conditional probability distribu-
tion. If Eq. (5) is effectively minimized, we can obtain
Ps(vs) ≈ Pt(vt). Under the ultimate situation, we have
Ps(vs) = Pt(vt). Then by assuming P (y) is consistent in
both domains, i.e., Ps(y) = Pt(y), we can get Ps(y|vs) −
Pt(y|vt) ∝ Ps(vs|y) − Pt(vt|y) based on Bayesian formu-
la P (y|v) = P (v|y)P (y)/P (v). Therefore matching the
class-conditional probability distribution P (v|y) is equiva-
lent to matching the sample-conditional probability distri-
bution P (y|v). Thus, given the true labels of labeled source
domain data and pseudo labels of unlabeled target domain
data, we can match the class-conditional probability distri-
butions of different domains by minimizing the MMD for
images in each class c as follows,

‖
1

nc
s

∑

xi∈Dc
s

vi −
1

nc
t

∑

xj∈Dc
t

vj‖
2
F = tr(VMcV

T ) (7)

where Dc
s is the subset of Ds in which the true labels of

images are c and nc
s = |Dc

s|. And Dc
t is the subset of Dt

in which the pseudo labels of images are c and nc
t = |Dc

t |.
And the MMD matrix Mc for class c is defined as follows,

(Mc)ij =















1
nc
sn

c
s
, if xi,xj ∈ D

c
s

1
nc
tn

c
t
, if xi,xj ∈ D

c
t

−1
nsnt

, if xi(xj) ∈ D
c
s,xj(xi) ∈ D

c
t

0, otherwise

(8)

Then by minimizing Eq. (7), the conditional probability
distribution difference between domains for each class can
be effectively reduced in the learned feature representations.

Here, the pseudo labels for target domain can be generated
by applying a classifier trained on the labeled source domain
to the target domain. Generally, 1 nearest neighbor (1NN)
classifier can lead to satisfactory result. However, many of
initial pseudo labels are incorrect because the conditional
probability distributions aren’t correctly matched at first.
To address this issue, we can conduct the feature learning
step and pseudo label generating step iteratively thus we
can expect to obtain more correct pseudo labels with more
iterations, leading to better matched conditional probability
distributions and vice versa. In our experiment, we find out
that satisfactory result can be achieved in 5 to 10 iterations.

3.2.4 Overall Objective Function

We first define the overall MMDmatrix asM =
∑C

c=0 Mc.



Algorithm 1 Learning Transfer Features by DRNMF

Input:
Image dataX = [Xs,Xt], true labels Ys, #basis vectors
k, graph Lap. L, regul. para. α, β, #iteration T

Output:
The learned basis U and transfer features V.

1: Construct M0 by Eq. (6), and Mc = 0, c = 1, ..., C
2: for t = 1 : T do
3: Construct R = αL+ β

∑C

c=0 Mc.
4: Initialize U and V by randomization.
5: repeat
6: Update U by Eq. (16).
7: Update V by Eq. (17).
8: until Convergence
9: Update pseudo labels Ŷt by 1NN classifier.
10: Construct Mc by Eq. (8), c = 1, ..., C.
11: end for
12: Return basis U and transfer features V.

Then by combining Eq. (4), Eq. (5) and Eq. (7), we can
obtain the overall objective function of DRNMF as follows,

O = ‖X−UV‖2F + tr(VRVT ) s.t. U,V ≥ 0 (9)

whereR = αL+βM is the overall distribution regularization
matrix which combines the geometric distribution regular-
ization, marginal probability distribution regularization and
conditional probability distribution regularization. α > 0
and β > 0 are the regularization parameters which trade
off the weight of geometrical distribution regularization and
probability distribution regularization respectively.

Actually, every term in Eq. (9) is indispensable for trans-
fer feature learning. NMF uncovers the intrinsic hidden se-
mantics of data leading to more meaningful representation,
which is an important difference and improvement compared
to several transfer feature learning methods like TCA and
JDA. The geometrical distribution regularization explores
the low-dimensional geometric structure underlying the da-
ta, which can promote the effectiveness of the learned repre-
sentations. The probability regularization can reduce both
the marginal and conditional probability distribution differ-
ence between domains such that we can build accurate clas-
sifiers on the learned representations, which is also a basic
requirement for a transfer feature learning method.

3.3 Optimization Algorithm
The optimization problem of minimizing Eq. (9) is not

convex with U and V together. Fortunately, it’s convex
with respect to any one while fixing the other. Therefore we
can utilize the following iterative strategy by updating one
while fixing the other which will achieve the local minima.

Based on the following matrix properties, ‖A‖2F = tr(AAT ),
tr(AB) = tr(BA) and tr(A) = tr(AT ), the objective func-
tion of DRNMF in Eq. (9) can be rewritten as follows,

O1 =tr(XXT )− 2tr(XVTUT ) + tr(VRVT )

+ tr(UVVTUT ), s.t. U,V ≥ 0
(10)

Now denote ψil and φlj as the Lagrange multiplier for con-
straint uil ≥ 0 and vlj ≥ 0 respectively, and Ψ = [ψil] and
Φ = [φlj ]. Then we can rewrite the Lagrange L as follows,

L = O1 + tr(ΨUT ) + tr(ΦVT ) (11)

The partial derivatives of L with respect to U and V are

∂L

∂U
= −2XVT + 2UVVT +Ψ (12)

∂L

∂V
= −2UTX+ 2UTUV + 2VR+Φ (13)

Then by using the Karush-Kuhn-Tucker conditions, that is,
ψiluil = 0 and φljvlj = 0, we get the following equations,

−(XVT )iluil + (UVVT )iluil = 0 (14)

−(UTX)ljvlj + (UTUV)jlvjl + (VR)jlvjl = 0 (15)

Then we obtain the following multiplicative updating rules:

uil ← uil

(XVT )il

(UVVT )il
(16)

vlj ← vlj
(UTX+VR−)lj

(UTUV +VR+)lj
(17)

where R+ = 1
2
(|R| + R) is the positive part of R and

R− = 1
2
(|R| −R) is the negative part of R. Applying Eq.

(16) and Eq. (17) iteratively, O in Eq. (9) can reach local
minima. Then based on the learned transfer representation
V, we can update the pseudo labels of target domain data
by a new 1NN classifier trained on source domain data. We
can repeat these two steps for T times for the final represen-
tation. Generally, setting T = 10 can result in satisfactory
performance and guarantee efficiency. We summarize the
overall optimization algorithm for DRNMF in Algorithm 1.

4. THEORETICAL ANALYSIS

4.1 Proof of Convergence
Actually, it’s important to note that there is no theoretical

evidence that the outer iteration can converge because we
have no labeled data and prior knowledge in target domain.
And because of the random initialization and the local min-
ima, we may obtain different pseudo labels even with the
same L and M. But fortunately, we find out in our experi-
ment that we can usually obtain more correct pseudo labels
in each iteration because the conditional probability distri-
bution is indeed better matched. And it will finally achieve
a relatively stable performance, generally within about 10
iterations. Thus this EM-like iterative strategy is always ef-
fective in reality, which is also validated in our experiment.

But we need to guarantee the convergence of the inner
iteration, i.e., the feature learning step (line 5 to 8). Oth-
erwise we can’t obtain effective and meaningful representa-
tions. The convergence is guaranteed by Theorem 1 below.

Theorem 1. The objective function O in Eq. (9) is non-
increasing under updating rules in Eq. (16) and Eq. (17).

The objective function is obviously lower-bounded by ze-
ro. Thus O will certainly converge if it’s nonincreasing. To
prove Theorem 1, we need to show O is nonincreasing under
Eq. (16) and Eq. (17). Actually, The part of O which is
only relevant to U is the same as NMF and the updating
rule in Eq. (16) is also exactly the same as in original N-
MF. Therefore O is nonincreasing under Eq. (16), whose
detailed proof can be found in [17]. Now we need to show
O is nonincreasing under Eq. (17). Following the proof in
[6], firstly we introduce the definition of auxiliary function



Definition 1. A(v, v′) is an auxiliary function for B(v)
if

A(v, v′) ≥ B(v), A(v, v) = B(v) (18)

are satisfied.

Then we need to introduce the following important lemma,

Lemma 1. If A(v, v′) is an auxiliary function of B(v),
then B(v) will be nonincreasing under the following update

v(t+1) = argmin
v
A(v, v(t)) (19)

Proof proof of Lemma 1.

B(v(t+1)) ≤ A(v(t+1), v(t)) ≤ A(v(t), v(t)) = B(v(t))

Now we need to show the updating rule for V in Eq. (17)
is exactly the update in Eq. (19) with a proper auxiliary
function. Let Bab denote the the part of O that is only
relevant to vab. Then the second-order partial derivative of
Bab is as

B
′′

ab = 2(UTU)aa + 2Rbb (20)

And it is quite easy to verify the following two inequalities,

(UTUV)ab =

k
∑

i=1

(UTU)akv
(t)
kb ≥ (UTU)aav

(t)
ab (21)

(VR+)ab =

n
∑

j=1

v
(t)
aj R

+
jb ≥ v

(t)
ab R

+
bb ≥ v

(t)
ab Rbb (22)

Lemma 2. The function

A(v, v
(t)
ab ) =Bab(v

(t)
ab ) +B

′

ab(v
(t)
ab )(v − v

(t)
ab )

+
(UTUV+VR+)ab

v
(t)
ab

(v − v(t)ab )
2

(23)

is an auxiliary function for Bab(v).

Proof proof to Lemma 2. It’s obvious that A(v, v) =

Bab(v). Now we need to show A(v, v
(t)
ab ) ≥ Bab(v). Here we

compare the Taylor series expansion of Bab(v) at v
(t)
ab as

Bab(v) =Bab(v
(t)
ab ) +B

′

ab(v
(t)
ab )(v − v

(t)
ab )

+
1

2
B

′′

ab(v
(t)
ab )(v − v

(t)
ab )

2
(24)

Based on the definition in Eq. (20) and Eq. (23), and t-
wo important inequalities presented in Eq. (21) and Eq.

(22), it’s quite straightforward to verify that A(v, v
(t)
ab ) ≥

Bab(v).

Proof proof of Theorem 1. We can replace A(v, v
(t)
ab )

in Eq. (19) by Eq. (23), which result in the following rule,

v
(t+1)
ab = v

(t)
ab − v

(t)
ab

B
′

ab(v
(t)
ab )

2(UTUV +VR+)ab

= v
(t)
ab

(UTX+VR−)ab

(UTUV +VR+)ab

(25)

which is identical to Eq. (17). Because A(v, v
(t)
ab ) is an auxil-

iary function of Bab, Bab is nonincreasing under this updat-
ing rule. Therefore O is nonincreasing under Eq. (17).

Table 2: Statistics of benchmark datasets
Dataset Type #Img #Fea #Class

MNIST Digit 1,000 256 10
USPS Digit 1,000 256 10

Semeion Digit 1,000 256 10
COIL1,2 Object 720 1024 20
PIE1,...,5 Face 1,360 1024 68

Figure 1: USPS, MNIST, Semeion, COIL, and PIE

4.2 Complexity Analysis
Suppose we have T outer iterations and t inner itera-

tions, then the overall time complexity for Algorithm 1 is
O(T t(mnk+(m+n)(k2+k)+n2k)). We can observe that the
complexity is linear to the feature dimension m. Therefore
the optimization algorithm is efficient for high-dimensional
feature which is very common for images data.

5. EXPERIMENT AND DISCUSSION

5.1 Experiment Setting

5.1.1 Benchmark Datasets

We conduct extensive experiment on three types of bench-
mark datasets for cross-domain image classification task, M-
NIST1+USPS2 +Semeion3, COIL4 and PIE5. We construct
several subsets from them for implementation efficiency. The
statistics of these datasets are summarized in Table 2. We
also present several sample images in Figure 1.

USPS, MNIST and Semeion are three widely used hand-
written digit datasets. To speed up experiments, we select
1, 000 images from each dataset, which consists of 10 classes
and 100 images per class. We rescale all images to size 16×16
and represent each image by a vector encoding the gray-scale
pixel values. From Figure 1, we can observe that these three
datasets follow quite different distributions. Thus we can
construct 6 cross-domain classification tasks, e.g., USPS vs
MNIST in which we use USPS as the labeled source domain
and MNIST as the unlabeled target domain.

COIL contains 1,440 images of 20 objects taken from d-
ifferent degrees. We split it into two subsets, COIL1 con-
taining images taken in directions of [0◦, 85◦] ∪ [180◦, 265◦]
and COIL2 in directions of [90◦, 175◦] ∪ [270◦, 355◦]. Both
contain 20 classes and 36 images per class. Thus COIL1 and
COIL2 follow different distributions. Each image is repre-
sented by a 1,024-dimension vector encoding the gray-scale

1http://yann.lecun.com/exdb/mnist/
21http://www-i6.informatik.rwth-aachen.de
3https://archive.ics.uci.edu/ml/datasets
4http://www.cs.columbia.edu/CAVE/software/softlib/coil-
20.php
5https://www.ri.cmu.edu/research-project-detail.html



Table 3: Cross-domain Image Classification Accuracy (%)
Dataset LR PCA NMF GNMF TCA TSL GFK TSC JDA Ours

MNIST vs USPS 41.30 41.40 47.08 50.36 50.20 66.40 64.28 67.84 71.30 88.83
USPS vs MNIST 34.30 34.30 36.64 39.71 40.00 46.10 38.91 46.85 53.30 56.07

MNIST vs Semeion 7.50 6.30 10.19 10.41 7.10 16.20 11.37 17.85 19.10 30.63
Semeion vs MNIST 10.40 10.50 8.14 11.74 7.90 17.80 13.80 20.57 28.20 29.49
USPS vs Semeion 38.90 38.40 34.31 36.69 41.60 48.00 39.71 41.32 55.30 58.11
Semeion vs USPS 42.30 42.00 36.97 41.72 55.30 58.90 52.17 65.41 69.10 76.13

COIL1 vs COIL2 76.11 75.56 74.33 77.31 78.47 82.84 76.31 85.12 88.75 94.31
COIL2 vs COIL1 74.03 73.75 73.56 75.06 78.61 80.61 77.84 84.33 86.67 95.00

PIE1 vs PIE5 21.03 20.15 30.15 30.64 36.25 38.75 32.26 40.31 42.87 52.13
PIE2 vs PIE4 64.56 62.35 55.88 59.37 68.75 73.28 63.41 71.85 76.18 80.02
PIE3 vs PIE1 29.49 29.19 35.66 38.18 46.83 44.84 40.08 46.84 49.56 61.10
PIE4 vs PIE3 67.21 64.48 68.68 70.59 72.21 75.85 70.26 76.21 80.22 86.69
PIE5 vs PIE2 31.39 29.63 30.81 32.62 37.57 38.17 39.78 36.04 42.79 44.12

Average 40.86 39.65 41.77 43.94 49.38 53.53 47.54 54.13 58.17 64.93

pixel values. And we can construct two cross-domain classi-
fication tasks, COIL1 vs COIL2 and COIL2 vs COIL1.

PIE face dataset contains images of 68 individuals under
different poses, illuminations and expressions. For thorough-
ly comparison, we construct 5 subsets with each correspond-
ing to a different poses, i.e., PIE1 (left), PIE2 (upward),
PIE3 (downward), PIE4 (frontal) and PIE5 (right). Each
subset contains 68 classes (individuals) with 20 images per
class where each image is represented by a 1,024-dimension
feature. So we can construct 20 cross-domain classification
tasks, i.e., PIEi vs PIEj (i, j = 1, ..., 5, i 6= j).

5.1.2 Baseline Methods

The proposed DRNMF is compared to several state-of-
the-art related feature learning methods for cross-domain
image classification task, including both standard feature
learning and transfer feature learning methods below.

• Logistic Regression (LR)
• Principle Component Analysis (PCA) + LR
• Nonnegative Matrix Factorization (NMF) [16] + LR
• Graph Regularized NMF (GNMF) [3] + LR
• Transfer Component Analysis (TCA) [23] + LR
• Transfer Subspace Learning (TSL) [28] + LR
• Geodestic Flow Kernel (GFK) [8] + LR
• Transfer Sparse Coding (TSC) [20] + LR
• Joint Distribution Adaptation (JDA) [21] + LR
We choose LR as the base classifier following the setting in

[20]. PCA, NMF and GNMF are standard learning methods
that NMF can uncover the intrinsic hidden semantics and
GNMF has geometrical distribution regularization. TCA,
TSL, GFK, TSC and JDA are transfer learning methods.
TCA and TSL only consider the marginal probability distri-
bution while JDA considers both marginal and conditional
distributions. They can’t uncover the hidden semantics of
data and ignore local geometric structure. TSC uncovers the
hidden semantics by Sparse Coding while it fails to reduce
the conditional probability distribution difference.

5.1.3 Implementation Details

For fair comparison, we fix some unimportant parameters
for all experiments as follows. The regularization parameter
for LR, i.e., c, is consistently set to 1. And for all feature
learning methods, we set k, the dimension of the new rep-
resentation, to 100. And p for constructing p-NN matrix, is
set as 5 for GNMF, TSC and DRNMF.

There are some important model parameters for different
baseline methods which may have significant effect on the
performance of these methods. For meaningful comparison,
we empirically search the parameter space for each base-
line methods and the best result for each baseline method
in each experiment is reported. Specifically, the graph reg-
ularization parameter in GNMF and TSC, is chosen from
{0.001, 0.005, 0.01, 0.05, ..., 100}. The adaptation regulariza-
tion parameter for TSL, TCA and JDA is empirically searched
in {0.01, 0.1, 1, 10, 100}. And the MMD regularization and
the sparsity regularization parameters in TSC are selected
from {100, ..., 106} and {0.001, 0.005, ..., 10} respectively.

There are two important parameters for DRNMF, i.e., the
geometrical distribution regularization parameter α and the
probability distribution regularization parameter β. In the
coming section, we conduct empirical analysis on parameter
sensitivity which demonstrates that DRNMF can achieve
superior and stable performance under a wide range of pa-
rameter values for α and β. When comparing with baseline
methods, we set 1) α = 0.1 and β = 100 for digit and object
datasets, and 2) α = 0.01 and β = 10 for face datasets. And
we further set the number of outer iterations, T , to 10.

The classification Accuracy on the target domain data is
adopted as the evaluation metric, which is widely utilized in
related literatures [21, 23, 28]. And it is defined as follows,

Accuracy =
|x : x ∈ Dt ∧ ŷ(x) = y(x)|

|x : x ∈ Dt|
(26)

where Dt is the target domain, ŷ(x) is the predicted label by
LR and y(x) is the true label of x. To remove randomness
caused by random initialization, like in NMF and DRNMF,
all results reported are the average over 10 runs.

5.2 Experiment Result

5.2.1 Cross-domain Classification Result

The classification results of DRNMF and other 9 baseline
methods on all 28 cross-domain datasets are shown in Table
3 and Figure 2. Because of the limit of space, we just list
5 datasets of PIE in Table 3, and all 20 results of PIE are
shown in Figure 2. We can observe that DRNMF can consis-
tently and significantly outperform all baseline methods on
all three types of tasks, i.e., digit, object and face. The aver-
age accuracy of DRNMF on all 28 datasets is 64.93%, and
the improvement compared to best baseline methods, i.e.,
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Figure 2: All Results on PIE

JDA, is 6.76%, implying DRNMF can significantly reduce
the classification error by 16.16%. The results verify the
effectiveness and superiority of DRNMF for learning robust
visual features for transfer feature learning. In addition, the
results also reveal some important points as below.

First, comparing PCA, TCA and JDA to GNMF, TSC
and DRNMF respectively, we can observe that GNMF, TSC
and DRNMF achieve much better performance. This phe-
nomenon implies that discovering intrinsic hidden semantic-
s (by NMF or SC) of data and considering the geometrical
distribution can indeed result in more effective features, and
only considering probability distribution is not enough. This
is an important reason for the superiority of DRNMF com-
pared to other transfer learning methods which only focus
on reducing the distribution difference, which is as well a
main motivation for combining NMF to transfer learning.

Second, transfer feature learning methods can markedly
outperform standard feature learning methods, since distri-
bution difference is a crucial issue under cross-domain set-
tings which is ignored by standard feature learning methods.

Third, DRNMF and JDA, who take the conditional prob-
ability distribution into consideration, outperforms TSC and
TCA who ignore it, which validates the importance of condi-
tional probability distribution for transfer feature learning.

Last, DRNMF, which takes all perspectives above, i.e.,
discovering intrinsic hidden semantics, geometrical distribu-
tion, marginal and conditional probability distributions, into
consideration, achieves best performance. Combining three
points above, we can see that all these perspectives are im-
portant and indispensable for learning effective and robust
visual features for cross-domain image classification.

5.2.2 Parameter Sensitivity Analysis

We conduct extensive analysis to validate that DRNMF
can achieve stable and superior performance under a wide
range of parameter values for α and β, as shown in Figure
3(a) and 3(b) respectively. Because of the limit of space, we
just report the results onMNIST vs USPS, COIL1 vs COIL2
and PIE4 vs PIE5. Actually, results on other datasets have
similar trends. The dashed lines stand for the best baseline
results. When we analyze one parameter, we fix the other
one to the parameter setting we mentioned in Section 5.1.3.

The parameter α controls the weight of geometrical regu-
larization. If it’s too small (e.g., α < 0.001), the geometrical
distribution can’t be preserved in the learned representa-
tions which may lower the performance as in [3]. On the
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Figure 4: Other issues

other hand, if it’s too large (e.g., α > 100), this term may
dominate the objective function in Eq. (9) such that the
others can’t work. And a too large α may also lead to the
trivial solution and scale transfer problem [10] as GNMF.
We can observe from Figure 3(a) that DRNMF can consis-
tently outperform the best result of baseline methods when
α ∈ [0.001, 1], which is a quite wide range for parameter α.

The weight of probability distribution regularization is
controlled by parameter β. If it’s too small (e.g., β <
10), the distribution difference can’t be reduced, which may
markedly degrade the performance of classifiers under cross-
domain setting. On the contrary, if it’s too large (e.g.,
β > 105), only the probability distributions of different
domains are matched while the NMF and the geometrical
distribution are discarded. As we have proved previously,
it’s not enough if only the probability distribution is taken
into consideration. The result proves again that the intrin-
sic hidden semantics, geometrical distribution, marginal and
conditional probability distributions are all important and
indispensable perspectives for TVFL. Fortunately, it’s not
difficult to choose a proper value for β from [10, 104], where
DRNMF consistently outperforms the best baseline.

5.2.3 Other Issues

Though there is no theoretical evidence that Algorithm 1
can converge w.r.t. outer iteration, the experimental results
validates that DRNMF has better performance with more
iterations, implying more correct pseudo labels are obtained
and conditional probability distributions between domains
are better matched indeed with more iterations, which also
demonstrates the effectiveness of our EM-like iterative strat-
egy. And superior and stable performance can be reached
within 10 outer iterations, as shown in Figure 4(a).

The optimization algorithm in inner iterations (for min-
imizing Eq. (9)) is theoretically guaranteed to converge as
proved in Section 4, but we also care about how fast it can
converge. In Figure 4(b), we plot the objective function val-
ue (averaged by the number of images) w.r.t. the number



of iterations. We can observe that the objective function
value decreases steadily and converges very fast, generally
within 100 iterations, which validates the effectiveness of the
multiplication updating rules in Eq. (16) and Eq. (17).

6. CONCLUSION
In this paper, we propose a novel method DRNMF for

TVFL, who simultaneously uncovers the intrinsic hidden
semantics of data, preserves geometrical distribution, and
reduces both marginal and conditional probability distribu-
tion difference between domains, which are all indispensable
and important for TVFL. We carried out extensive exper-
iments on three types of cross-domain image classification
tasks, and the results demonstrate that DRNMF can signif-
icantly outperform several state-of-the-art related methods,
verifying the superiority and effectiveness of DRNMF.
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